On the topic of LED brightness

I think a vision most builders have for their completed panels are having them all lit up with loads of various LEDs and indicators. I too have the same vision. However one thing to keep in mind is that some LEDs can be quite bright, especially the blue and white LEDs.(I’ll come back to this)

Now if you have even a little electronics knowledge you should know that you cant have an LED hooked directly hooked up to the 5 or 3.3V power supply of your arduino. You NEED a resistor to limit current and prevent killing your precious diodes. For standard 5mm LEDs a resistor somewhere in the range of 220 and 330 ohms is a good place to start. Obviously the more ohms the dimmer the light will become.

The LEDs I bulk ordered from china are quite bright especially when it comes to the Blue and White varieties. Having a bunch lit up shining in your face while your trying to play the game isn’t optimal. So I figured before I bulk order a bunch of resistors I should test each color LED and find a resistor value that gives each color an even and comfortable brightness. At first I thought the best way to do this would be to use a potentiometer in series with the LED to tune the brightness to a level I was happy with then use a multi-meter to measure the resulting resistance value. This is a perfectly acceptable way to do this but then I came across a method I liked a little better. (and is a lot more precise and reliable)

A “programmable” resistor! This board has 63 surface mount resistors on one side and 7 sets of headers on the other. Using the provided pin jumpers you can set the board to have ANY resistance value from 0 to 9,999,999 ohms (almost 10 Megaohms) I picked this up cheap off AliExpress for $2.98 CDN plus $4.90 CDN shipping. It will surely be a handy addition to my toolbox and i’m sure you’ll be seeing me use it down the road.

Ignore the misprints on the board, the max value is NOT 1000 Megaohms as the silkscreen implies. :p

Adding the meters to the panel!

On my day off today I decided to continue work on my panel. I added the 1/4 inch MDF faces and aimed to mount both meters in the tower.

I decided to start with the square meter which will display the ships total power. It was the easier of the to mount in the tower.

To start I simply used the largest hole saw I have and made a hole right in the middle of the square I had to remove.

I then used a jigsaw to carefully remove the rest of the wood. I used spiral cuts to each corner and just kept working at it. This takes a bit of time but usually ends in nice clean cuts. Remember to not make too sharp of turns when using a jigsaw or you risk binding and breaking the blade or even damaging your material.

I was a little on the careful side when making these cuts so I had to do a lot of slow sanding to widen the opening to fit the meter. I used a mix of tapered sanding sponge, Regular sandpaper, and a bar file. Basically just working with what I had on hand.

Eventually it fit and looks fairly good!

The second meter was a bit more complex to mount. First I started by marking the meter’s total footprint and the point to make another hole via a holesaw.

I cut out the hole and then when I went to test fit the meter I realized that the meter wouldn’t sit flush on the panel. This meter had a small protrusion that I didn’t notice so I had to use my dremel to sand and enlarge the hole by quite a bit.

This worked and allowed the meter to sit flat. This picture shows the meters from the back and in it you can really see how differently they mount. Luckily my messy work on the 2nd meter is hidden.

And Just like that both are sitting nicely on the tower! Hope you found the process interesting! I did end up ordering those 8 torpedo tube select buttons I mentioned in my previous post. They will be going on the foot of this tower… in fact this tower will end up being fairly similar to the dev’s MK2 tower.


Anyway, thanks for visiting!